

 Navigation

 	
 index

 	
 next |

 	Reactor Track 0.0.1 documentation

Welcome to Reactor Track’s documentation!

A simple hack that can turn out to be useful someday.
(For use with python twisted)

It strives to make twisted debugging easy.

For now it can:

	track deferred creation

	track when call/errback is attached to the deferred

	track when call/errback has executed or failed to execute

	track when a deferred is chained to another deferred

Documentation index:

	Introduction

	Using model2map

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Martin Gergov.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reactor Track 0.0.1 documentation

Introduction

Note

If you have no knowedge of what twisted is I recommend you
start here http://twistedmatrix.com/documents/current/core/howto/index.html

Hello there ! This is the introduction page for Reactor Track - a very
new and very experimental project intended to drive away the falsely
accusations from Twisted [http://twistedmatrix.com/] for being hard to understand and
debug. Currently a great deal of effort on all abstaction layers is
made to make the learning curve smooth. Either way this tool might help
you visualize how deferreds work (and other objects coming soon).

Note

You are very welcome to send suggestions for what the tool/s should do
more or what it should do better by submitting issues to
https://bitbucket.org/marto1/reactortrack/issuse !

Reactor track works as a chain of scripts that need to be executed(or not)
so that integration with your source remains easy while allowing it to be
used for other stuff too !

So firstly we need to choose which objects we will track.
Tracked objects produce events like executing a callback which we
could use later. We can look at example.py:

from twisted.internet import defer, reactor
import json, sys
from time import sleep

from reactortrack.monitor import JSONMonitor

def simpleCallback(ignored):
 sleep(1)
 return 1

def followup(ignored):
 return 2

def problem(ignored):
 raise Exception("oh no")

def simpleErrback(failure):
 return None

def finished(ignored):
 print "FINISHED!"

monitor = JSONMonitor(True)
d = defer.Deferred()
d2 = defer.Deferred()
monitor.track(d)
d.addCallback(simpleCallback)
d.addCallbacks(followup)
d.addCallbacks(problem)
d.addErrback(simpleErrback)

d.chainDeferred(d2)
d2.addCallback(simpleCallback)

d.addCallback(finished)

reactor.callLater(0.1, d.callback, None)
reactor.run()

f = open("mon.out", "w")

for line in monitor.buffer:
 f.write("{0}\n".format(line))

f.close()

The script does several things:

from twisted.internet import defer, reactor
import json, sys
from time import sleep

from reactortrack.monitor import JSONMonitor

def simpleCallback(ignored):
 sleep(1)
 return 1

def followup(ignored):
 return 2

def problem(ignored):
 raise Exception("oh no")

def simpleErrback(failure):
 return None

def finished(ignored):
 print "FINISHED!"

Define some functions, some of them intentionally sleep so that we can
simulate something that executes longer.

monitor = JSONMonitor(True)
d = defer.Deferred()
d2 = defer.Deferred()
monitor.track(d)
d.addCallback(simpleCallback)
d.addCallbacks(followup)
d.addCallbacks(problem)
d.addErrback(simpleErrback)

d.chainDeferred(d2)
d2.addCallback(simpleCallback)

d.addCallback(finished)

Here we have four things to look at:

	monitor = JSONMonitor(True) We create an instance of a so
called Monitor(not to be confused with Per Brinch Hansen’s monitor)
which is an object that takes care of tracking objects. The
True parameter is telling the monitor to track chained
deferreds too so you don’t have to tell him explicitly. Another
thing to note here is that it will log events in json format in an
internal buffer which we read at the final step.

	d = defer.Deferred(); d2 = defer.Deferred() We create several
deferreds to track. Nothing special here.

	monitor.track(d) We tell the monitor that it will track this deferred.

	We add some call and errbacks as well as a chained deferred. These are
events which will be logged.

After that we set a callLater for firing d and run the reactor.

The following simply gets every line from the monitor buffer and
saves it to a file.

f = open("mon.out", "w")

for line in monitor.buffer:
 f.write("{0}\n".format(line))

f.close()

And that’s it ! Following this idea we can track any deferred we like.

Now just run example.py, wait for it to print FINISHED!, CTRL+C the
reactor and it will create the file mon.out .

Next is visualising mon.out.

 Copyright 2013, Martin Gergov.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	Reactor Track 0.0.1 documentation

Using model2map

You’ve got your json event log which looks something like:

{"action": "attached", "deferred": 25657144, "errback": null, "callback": "__main__.simpleCallback"}
{"action": "attached", "deferred": 25656712, "errback": null, "callback": "__main__.finished"}
{"action": "executed", "deferred": 25656712, "time": 1.001, "callback?": true, "callback": "__main__.simpleCallback"}

This could be helpful, but does not allow you to look at everything
as a whole. model2map is a tool which builds a SquareMap [https://pypi.python.org/pypi/SquareMap/] from the deferred’s
callback chain and visualizes its execution.

Pipe the file to model2map cat mon.out | monitor2map.
Something like this appears:

[image: _images/firstview.jpg]
This is the root element. It is just a container for all the tracked objects.
You can tell model2map to read the first line from the file from the Debug
menu->Next line or CTRL+N.

[image: _images/secondview.png]
Do this several times till you get something like:

[image: _images/thirdview.png]
This is the deferred with everything in example.py added to it (including
the deferred that was chained, embedded with its callbacks drawned on a
deeper depth). After this the deferred is fired and execution begins:

[image: _images/forthview.png]
The tile in red is the callback currently executing. When execution
finishes the “cursor” will stay at the last executed callback.

Note

For now this rule also applies to chained deferreds too.

 Copyright 2013, Martin Gergov.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	Reactor Track 0.0.1 documentation

Index

 Copyright 2013, Martin Gergov.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/secondview.png

_static/minus.png

_static/comment-bright.png

_images/secondview.png

_static/firstview.jpg

search.html

 Navigation

 		
 index

 		Reactor Track 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Martin Gergov.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_images/forthview.png
[_main_followup

No errback

No errback

(_main_problem

No errback

ftwisted.internet.defer. passthru

[_main_simpleErrback

i main_simpleCallback

No errback

[twisted.internet.defer. Deferred,

ftwisted.internet. defer.Deferred;

("main_finished

No errback

_static/comment.png

_static/forthview.png
[_main_followup

No errback

No errback

(_main_problem

No errback

ftwisted.internet.defer. passthru

[_main_simpleErrback

i main_simpleCallback

No errback

[twisted.internet.defer. Deferred,

ftwisted.internet. defer.Deferred;

("main_finished

No errback

_images/thirdview.png
(_main_simpleCallback

No errback

[“main_followup

No errback

(“main_problem

No errback

ftwisted internet.defer.passthru

[main_simpleErrback

i main_simpleCallback

No errback

ftwisted.internet.defer.Deferred,

ftwisted.internet. defer.Deferred.

_static/ajax-loader.gif

_static/file.png

_static/thirdview.png
(_main_simpleCallback

No errback

[“main_followup

No errback

(“main_problem

No errback

ftwisted internet.defer.passthru

[main_simpleErrback

i main_simpleCallback

No errback

ftwisted.internet.defer.Deferred,

ftwisted.internet. defer.Deferred.

_images/firstview.jpg

_static/down-pressed.png

